Error bound results for convex inequality systems via conjugate duality

نویسندگان

  • Radu Ioan Boţ
  • Ernö Robert Csetnek
  • Marco A. López
چکیده

The aim of this paper is to implement some new techniques, based on conjugate duality in convex optimization, for proving the existence of global error bounds for convex inequality systems. We deal first of all with systems described via one convex inequality and extend the achieved results, by making use of a celebrated scalarization function, to convex inequality systems expressed by means of a general vector function. We also propose a second approach for guaranteeing the existence of global error bounds of the latter, which meanwhile sharpens the classical result of Robinson.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Farkas-type results for inequality systems with composed convex functions via conjugate duality

We present some Farkas-type results for inequality systems involving finitely many functions. Therefore we use a conjugate duality approach applied to an optimization problem with a composed convex objective function and convex inequality constraints. Some recently obtained results are rediscovered as special cases of our main result.

متن کامل

Farkas–type Results for General Composed Convex Optimization Problems with Inequality Constraints

In this paper, we consider a general composed convex optimization problem with inequality systems involving a finite number of convex constraints. We establish the strong duality between the primal problem and the Fenchel-Lagrange dual problem by a conjugate duality approach. Moreover, we obtain some new Farkas-type results for this problem by using weak and strong duality theorems. Our results...

متن کامل

Strong Duality in Robust Convex Programming: Complete Characterizations

Abstract. Duality theory has played a key role in convex programming in the absence of data uncertainty. In this paper, we present a duality theory for convex programming problems in the face of data uncertainty via robust optimization. We characterize strong duality between the robust counterpart of an uncertain convex program and the optimistic counterpart of its uncertain Lagrangian dual. We...

متن کامل

Starlike Functions of order α With Respect To 2(j,k)-Symmetric Conjugate Points

In this paper, we introduced and investigated starlike and convex functions of order α with respect to 2(j,k)-symmetric conjugate points and coefficient inequality for function belonging to these classes are provided . Also we obtain some convolution condition for functions belonging to this class.

متن کامل

Farkas-Type Results With Conjugate Functions

Abstract. We present some new Farkas-type results for inequality systems involving a finite as well as an infinite number of convex constraints. For this, we use two kinds of conjugate dual problems, namely an extended Fenchel-type dual problem and the recently introduced FenchelLagrange dual problem. For the latter, which is a ”combination” of the classical Fenchel and Lagrange duals, the stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011